搜索
新技术
  • 有机化工
    新技术
    环氧丙烷
    环氧氯丙烷
    环氧环己烷
    甲基丙烯酸甲酯(MMA)
    丙烯酸甲酯
    甲基丙烯腈
    DMF
    2,6-萘二甲酸
    1,3-丙二醇
    氯化石蜡
    己二腈
    醋酸
    醋酸甲酯
    四氢呋喃
    苯胺
    苯酚
    丙烷脱氢
    HPPO
    丁辛醇
    DMT
    乙二醇
    新戊二醇
    异丁烯
    己二胺
    碳酸二甲酯
    顺酐
    醋酸乙烯
    环氧乙烷
    丁辛醇
    己二酸
    丙烯腈
    对二甲苯
    己内酰胺
    乙苯
    异丙醇
    丙烷脱氢
    氯化石蜡
    乙醇胺
    C4
    环己烯
    电石乙炔
    乙烯法氯乙烯
    焦炉煤气甲醇
    1,4-丁二醇
    醋酐
    甲醛
    醋酸丁酯
    1,6-己二醇
    丙烯酸
    丁二 烯
    对二甲苯
    丁酸丁酯
    C4,C5
    叔丁醇
    甲醇
    苯乙烯
  • 无机化工
    新技术
    双氧水
    硫磺
    HCN
    Fe3O4
    γ-Al2O3
    二氧化锰
    勃姆石
    α‑Al2O3
    碱式碳酸钕
    氧化钕
    CS2
    氟化钾
    过碳酸钠
    过碳酰胺
    氯化钾
    次氯酸钠
    离子膜烧碱
    氢氧化钾
    元明粉
    大颗粒尿素
    氢氧化镁
    磷酸二氢钾
    氧化铬绿
    多聚磷酸铵
    合成氨
    氢氧化铝
    白炭黑
    重铬酸钠
    硫酸钾
  • 新材料
    新技术
    高乙烯基聚丁二烯橡胶
    PEN
    PTT
    低分子量聚苯醚
    PPS
    芳纶
    碳纤维
    锂电池电极材料
    聚碳酸酯
    PC/ABS
    TPV
    聚丁二烯橡胶
    聚酰亚胺
    电子化学品
    聚甲醛
    脂肪族环氧树脂
    碳酸乙烯酯
    碳酸丙烯酯
    聚氨酯
    聚羧酸减水剂
    尼龙1212
    氯化聚氯乙烯
    糊状PVC
    尼龙11合金
    本体ABS
    聚四氟乙烯
    聚苯醚
    球形石蜡
    纳米活性碳酸钙
    碱式硫酸镁晶须
    高吸水性树脂
    六氟磷酸锂
    炭微纳米球
    磷酸铁锂
    锂电池隔膜
    聚醚醚酮
    SIBS
    纳米复合处理剂
    碳酸酯
    聚酰胺11
    杜仲胶
    硅烷伴侣
    PC
    对二甲苯环二体
    热致性液晶聚合物
    电子级硫酸
    丁苯透明抗冲树脂
    PA11
    途改性 PBT
    改性聚酰胺(PA)系
    改性聚碳酸酯(PC)
    改性 PET
    改性聚氯乙烯(PVC)
    的改性聚甲醛(POM)
    改性的聚丙烯
    能改性聚苯乙烯-丁二烯-丙烯晴(ABS)
    低能耗简便  PET 工业废料增粘回收
    杂环芳纶
    溶聚丁苯橡胶(SSBR)
    1 万吨聚苯硫醚(PPS)
    丁苯透明抗冲树脂(S-透明抗冲树脂)
  • 降解塑料
    新技术
    PLA
    PBS
    PBAT
    PSM
    PCL
    PHA
    PEF
    PPC
    PGA
  • 生物化工
    新技术
    2-甲基呋喃
    5-羟甲基糠醛
    糠醇
    四氢糠醇
    三氯蔗糖
    甲醇蛋白
    乳酸酯
    L-乳酸/D-乳酸
    生物柴油
    生物胶
    甲壳素/壳聚糖
    生物传感器
    D-泛酸
  • 医药化工
    新技术
    维生素E
    牛磺熊去氧胆酸
    哌啶
    叶黄素
    左旋肉碱
    D-泛酸
    2,3-二氯吡啶
    (R)-邻氯扁桃酸甲酯
    (R)-硫辛酸
    甜菊糖甙
    6-APA
    雷美替胺
    对氨基苯酚
    更多
  • 精细化工
    新技术
    N-烃基吡咯烷酮
    环十二碳三烯
    1,2,4-丁三醇
    蛋氨酸
    丁二酸
    硝酸异辛酯
    假紫罗兰酮
    4-(6-羟基己氧基)苯酚
    苯酞
    苯基苄胺
    香兰素
    γ-戊内脂
    四丁基锡
    茴香醛
    异戊烯醇
    异戊烯醛
    1,4-萘醌
    1,6-己二醇
    α-萘酚
    肿胺
    叔胺
    对羟基苯丙酸
    1,5-戊二胺
    糠醇
    3,4-二甲基苯甲醛
    二丙基庚醇
    异壬醇
    正异丁醛
    二甲基二硫
    二甲基亚砜
    1,5-戊二胺
    三聚甲醛
    1,6-己二醇
    γ-丁内酯
    甲缩醛
    DOTP
    偏苯三酸酐
    醋酸仲丁酯
    长直链烷基苯
    二丙二醇
    氯化胆碱
    双乙酸钠
    过氧化甲乙酮(MEKPO)
    四乙酰乙二胺(TAED)
    氯化亚砜
    烷基糖苷
    乙二醛
    脲醛胶
    氯乙酸
    羟乙基纤维素(HEC)
    丙醛
    烷基蒽醌
    2-甲基呋喃
    电子化学品
    甲缩醛
    三羟甲基丙烷
    1,3-环己二酮
    叔丁酚
    烷基酚
    叔丁醇
    对二甲苯环二体
    印制线路板用的免清洗助焊剂
    密胺微胶囊聚磷酸铵(APP)
    超纯微电子级四甲基氢氧化铵
  • 新能源
    新技术
    制氢
    储氢
    运氢
    加氢
    氢燃料电池
    甲醇水制氢
  • 环保及水处理
    新技术
    印染
    纺织
    造纸
    电厂
    化工
    食品
    CO2减排
    脱硝
    脱硫
    VOCS
    海水淡化
    水处理膜
    土壤修复
    河道湖泊
    聚丙烯酰胺类高分子絮凝剂
  • 煤化工
    新技术
    聚甲氧基二甲醚
    提纯DMC
    甲缩醛
    煤制甲醇
    煤制乙二醇
    煤焦油加氢
    煤制氢
    二甲醚
    甲醇制油
    低压煤制甲醇
    合成气
    草酰胺
  • 其他
    PTA优化
    成套装备
    β-淀粉酶
    赤藓糖醇
    增稠剂
    瓜尔胶
新闻详情

二氧化碳加氢合成甲醇研究获突破

发表时间:2021-06-10 21:30

近日,通过密度泛函理论研究了氧化铟负载的银催化剂应用于二氧化碳加氢制甲醇的可行性,从理论上确定了反应转化途径,并用实验证明了理论预测结果,在负载银催化剂高活性、高选择性二氧化碳加氢合成甲醇实验方面取得了突破。

在碳中和背景下,二氧化碳如何进行高效转化成为化学家关注的焦点。在可能的各种化学反应中,最有希望开展大规模应用的是二氧化碳加氢生成甲醇的反应。目前,具有高活性和高选择性的二氧化碳加氢催化剂成为进一步应用的关键。

银催化剂已被用于研究光催化和电化学还原二氧化碳。然而,尚未有研究证实其对于二氧化碳选择性加氢制甲醇具备高活性。

刘昌俊介绍,自2013年起,他们与合作者通过理论计算和实验证实,含氧空位的氧化铟及其负载的钯、铂、金、镍、铑、铱等金属催化剂对于二氧化碳加氢生成甲醇具备很高的甲醇选择性和较高的活性,氧化铟负载金属催化剂也具有很好的稳定性。氧化铟负载银催化剂应用于非均相二氧化碳加氢制甲醇反应尚未有研究报道。

在最新的这项研究中,课题组将氧化铟的合作者聚焦在金属银催化剂上,通过银与氧化铟的结合调变,使Ag/In?O?催化剂成为二氧化碳加氢合成甲醇的高活性催化剂。

研究人员首先通过密度泛函理论计算,分析了银与含氧空位氧化铟表面之间的相互作用。计算结果发现,二者之间的界面位点能够很好地活化二氧化碳分子,使其更容易在该位点发生加氢反应。

基于理论计算的结果,研究人员采用沉积沉淀法制备出Ag/In?O?催化剂,并与氧化铟催化剂对比进行了反应活性评价。对比结果显示,银的加入提升了二氧化碳加氢生成甲醇的能力,明显降低了其转化的表观活化能。而稳定测试的结果也说明Ag/In?O?催化剂具备更好的催化稳定性,相比In?O?催化剂,反应10小时后,活性保持率为90.5%,而In?O?催化剂的活性保持率仅为80.4%。

此外,表征实验也证实,银的加入能够促进表面氧空位的生成,从而增多氧空位位点的数量,促进二氧化碳的吸附与解离过程。研究人员表示,希望这项工作为高选择性氧化铟基催化剂的理性设计提供指导。


分享到: